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ABSTRACT
Altruistic cooperation is socially desirable yet costly, thereby chal-
lenging to promote in multiagent systems. Indirect reciprocity (IR),
where the decision to cooperate or defect is based on reputations,
serves as a key mechanism to elicit cooperation among selfish
agents. However, IR faces challenges under private assessment, due
to the so-called punishment dilemma: without mechanisms forc-
ing reputation consensus, disagreements will emerge, resulting in
apparently unjustified defections which are punished. Following
the increasing prevalence of hybrid systems, where artificial agents
(AAs) coexist with humans, we aim to understand the role of AAs
in alleviating IR’s punishment dilemma and improving coopera-
tion. We develop an analytical evolutionary game-theoretical model
to study cooperation under IR with private assessment. A fixed-
strategy AA is embedded within an adaptive population, the latter
simulating a population of humans adapting over time. We show
that limited interactions with the AA are sufficient to impact the
distribution of reputations in a population, allowing justified defec-
tion to be widely recognized and fostering cooperation. This work
highlights the potential of using artificial agents, even with simple
fixed strategies, to impact humans’ moral assessments, generate
reputation consensus and promote cooperation.
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1 INTRODUCTION
Cooperation requires that an individual spends a cost, 𝑐 , to offer
a benefit, 𝑏, to another individual. A social dilemma exists when
𝑏 > 𝑐 > 0, as cooperation provides a greater benefit, but defection is
the rational choice [66]. Several mechanisms enable human proso-
cial behavior [35], and indirect reciprocity (IR) is fundamental for
cooperation between unrelated individuals [37]. In particular, IR
can promote cooperation through reputations [3] – even if individu-
als interact with others for the first time, they might have observed
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or heard about their prior interactions (e.g., via gossip [9]) and use
this information to decide whom to help. A good reputation is thus
important to keep, as it becomes key to receive cooperation.

IR has been studied under variable observability, reputation
spreading mechanisms, and assessment rules [42]. A challenging
scenario for maintaining cooperation occurs when reputations are
private, that is, reputations are not publicly shared, which can
prevent consensus on who deserves cooperation [23, 28]. As dis-
agreements multiply, punishment against defectors might not be
understood – this is known as the punishment dilemma [33, 72, 73].

While IR has been studied in the context of human populations,
agentic AI systems [63] and Socially Interactive Agents [30] are now
widely accessible and can impact dynamics of human pro-sociality
and reciprocity [46]. Scenarios of hybrid populations [2, 8, 12, 48,
71], where humans coexist with artificial agents (AA), have gathered
attention for their promise as tools to promote cooperation [18].
However, the effects of AAs on IR, particularly so in the context of
private reputations, remain unclear. This context is relevant when
interacting with cooperative robots [76], or chatbots [6], where
interactions can have low observability. AAs also pose challenges
under IR, as it has been shown that they are judged differently than
humans. In particular, AAs are judged by their actions, and humans
by their intentions [22]. This difference naturally influences how
reputations are assigned to humans and AAs, affecting human-AI
interactions, particularly so in prosocial behavior [47].

We pose the following research questions: 1) Can an artificial
agent (AA) promote cooperation under indirect reciprocity
with private reputations? 2) Can an AA increase agreement
in human reputations, mitigating IR’s punishment dilemma?
3) Do simplified human judgments against AAs affect their
impact in promoting cooperation and agreement under IR?

To address these questions, we introduce an analytical evolu-
tionary game theoretical model [66] where a finite population of
adaptive agents repeatedly play a donation game among each other
and an AA. The adaptive population is used as a proxy for humans,
who can adapt their strategies over time [66] 1. Agents can cooper-
ate, C, paying a cost 𝑐 to offer the other agent a benefit 𝑏; or defect,
D, giving no benefit at no own cost. In our model, agents attribute
reputations depending on the type of agents involved, enabling
distinct judgments between AAs and humans. A schematic view of
our model is available in Figure 1. We show how a small fraction of
interactions with the AA is enough to promote cooperation across
most social norms, and observe how the AA is capable of increas-
ing the distinguishability between defectors and cooperators in
human-assigned reputations, mitigating the punishment dilemma.

1Although we refer to adaptive agents and humans interchangeably for simplicity, we
clarify that no experiments with humans were conducted in this work.
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Figure 1: A schematic view of our model: a. A well-mixed population where with a probability 𝜏 humans interact with the AA,
otherwise (1 − 𝜏) they interact with a randomly sampled human. b. Social norms define how reputations are assigned, based on
the donor’s action and the receiver’s reputation. Norms applied to humans and AAs differ: AAs are judged solely by their action
and not the receiver’s reputation. c. We study dynamics between 3 strategies: unconditional cooperation (ALLC), unconditional
defection (ALLD) and reputation-based discrimination (DISC), that cooperate only against those with good reputation.

2 RELATEDWORK
Cooperation and consensus under indirect reciprocity: There
has been much research into the role of IR in promoting coopera-
tion across human societies [36, 42]. Emphasis has been placed on
understanding the role of social norms, i.e., rules that dictate which
reputation an individual is assigned following an interaction. In
particular, previous works explored their emergence and evolution
[37, 49, 78, 79], complexity [57], stability [39, 40], and relationship
with culture and morality [16, 38]. The spreading of reputations
throughout the population has also received considerable attention:
while much work has assumed public reputations as a consequence
of gossip, others have considered partial gossip or even fully pri-
vate assessments [15, 23, 52]. As opposed to public assessment,
private reputations pose challenges to cooperation through IR, as
reputation disagreements lead to apparent unjustified defections,
causing further disagreements and thus preventing consensus on
who should receive cooperation [67, 72–74, 78]. Recent work has
focused on reputation agreement [28] and proposed mechanisms,
such as gossip and reputation aggregation, to promote it [25, 33].

Human judgment in hybrid populations: Recent work has
shed light on how human judgment differs for actions performed by
AAs or other humans [7, 19, 20, 31, 44]. Despite humans expressing
the same ideal social norm for both types of agents before obser-
vation (e.g., “No one should kill.”), after observation results differ:
While humans are primarily judged by their intentions, the same
does not hold true for AAs, as moral justifications are less readily
available [32, 59]. Instead, humans employ a simplified judgment,
where the action of the AA is the primary factor for the moral
judgment of the agent [22]. These different judgment rules suggests
that humans employ distinct social norms depending on the type
of agent executing an action, and potentially receiving it.

Modelling hybrid populations:The study of artificial agents in
hybrid scenarios has been conducted in many contexts. These AAs
are characterized as designed agents that employ a selected fixed
policy, which can be hard-coded by the agent designer[4]. These are
often referred to as “seeding” [4] or “fixed-strategy” agents [17, 61].

Additionally, while the study of independent AAs in cooperation has
been well documented [54], current technologies such as chatbots
[6] or autonomous vehicles [10] present centralized architectures
where either a single AA – or many fully-synchronized agents –
exist. In the context of IR, these agents can help promote consensus,
as there is no disagreement between their instances.

Cooperation in hybrid populations: The study of cooper-
ation in scenarios of hybrid populations [2, 8, 12, 18, 62, 69] has
gained large momentum, highlighting the benefits and limitations
of AAs in various contexts. Despite this, research focused on IR has
remained largely absent. [50] has shown that, when reputations
are public, cooperation via can be highly promoted by introducing
AAs in the population. However, it is unclear if these conclusions
translate to private reputations, when AAs are judged differently
than humans. In particular, it is important to understand both their
influence on human cooperation and in generating consensus and
distinguishability on reputations. While many mechanisms have
been proposed to assist in synchronizing reputations [25, 27, 60],
none has yet considered the role of artificial agents.

Social norms and normative systems: In our model, repu-
tations are assigned based on assessment rules, also called social
norms [37]. There is a vast literature on norms in multiagent sys-
tems [1, 11, 34, 58, 61]. According to a recent review [21], our norms
can be considered prescriptive and explicit. Moreover, our norms
are essential norms, used to to solve cooperation dilemmas, as op-
posed to conventional, which result from agents’ coordination [77].
Furthermore, we apply norms in a top-down fashion, but their ef-
fectiveness is computed via a bottom-up process, where strategies
evolve over time; as a result, our norms involve both a top-down
“legalist” and bottom-up “interactionist” approach [21].

3 MODEL AND METHODS
We consider a finite and well-mixed population consisting of 𝑍
adaptive individuals, following prior work on IR [38, 39, 56]. These
agents engage in repeated donation games, where an agent, des-
ignated as the donor, can either cooperate, C, paying a cost 𝑐 to
offer the other agent, the recipient, a benefit 𝑏, where 𝑏 > 𝑐 > 0,



or defect, D, where no donation is made, and thus no cost is paid.
Other agents observe these interactions and hold a private view of
every other agent. That is, any agent 𝑖 can consider another agent
𝑗 either Good (G) or Bad (B). As these reputations are private, two
individuals must not necessarily agree on the reputation of a focal
agent. We detail how these reputations are assigned in Section 3.2.
This is opposed to public reputation settings, where each agent has
a publicly agreed upon reputation, as a consequence of gossip.

The action of each agent depends on their strategy, which itself
uses the private reputation of the recipient. Formally, a strategy is
a tuple 𝑠 = (𝑠𝐺 , 𝑠𝐵), where 𝑠𝐺 and 𝑠𝐵 are the probability of cooper-
ating with an individual considered G and B, respectively. At any
time, an agent will make use of one of the three following strategies:
ALLC (1, 1), where cooperation is always selected independently of
the reputation of the recipient;ALLD (0, 0), where the donor always
defects; and DISC (1, 0), where an individual will only donate to
good individuals, and defect against bad individuals. Additionally,
we include execution errors: with a probability 𝑒𝑒 , an otherwise
cooperative act will instead result in a defection [14].

3.1 Introducing an Artificial Agent
We consider a hybrid population, where humans coexist with ar-
tificial agents (AAs) [13]. In it, any of the three previous roles of
the donation game (Donor, Recipient, and Observer) can be played
by an AA. In our model, AAs also hold a private view of other
agents, and act according to one of the three possible strategies. As
opposed to adaptive agents, the strategy of an AA is hard-coded
and thus constant in time [18, 54, 62]. Humans and AAs can be
judged differently [22], which we implement through distinct social
norms for assessing humans and the AA, as detailed in Section 3.2.

We assume that AAs are perfectly coordinated in their assess-
ments, which can result from perfect communication between inde-
pendent AAs, the existence of a common reputation database, or a
single centralized AA [6]. This avoids disagreements in the private
reputation views between AAs, allowing us to instead focus on the
effect of coordinated AAs on potentially disagreeing humans. We
define 𝜏 to be the probability that, for any interaction, a human
will instead play with the AA. The fixed strategy of this AA is
designated as 𝑠𝐴 ∈ 𝑆 = {𝐴𝐿𝐿𝐶,𝐴𝐿𝐿𝐷, 𝐷𝐼𝑆𝐶}.

3.2 Reputation Dynamics
Agents’ private reputations are updated following a social norm.
We use second-order social norms [33, 57], which consider the
action of the donor and the reputation of the receiver, to assign
a new reputation to the donor. These are encoded using a 4-bit
tuple 𝑑 = (𝑑𝐺,𝐶 , 𝑑𝐺,𝐷 , 𝑑𝐵,𝐶 , 𝑑𝐵,𝐷 ), representing the probability of
assigning a good reputation in any of the four possible scenarios
(e.g., 𝑑𝐵,𝐶 represents the probability of assigningG to a donor using
action C facing an individual seen as B). This allows for a total
of 16 second-order social norms, of which we focus on four key
norms known to sustain cooperation [39, 40, 68]: Image Score
(IS) [36], 𝑑 = (1, 0, 1, 0), where cooperating is always good and
defecting is always bad; Simple Standing (SS), 𝑑 = (1, 0, 1, 1),
where only defecting against a good individual is bad; Shunning
(SH), 𝑑 = (1, 0, 0, 0), where only cooperating with a good agent
is good; and Stern Judging (SJ) [45], 𝑑 = (1, 0, 0, 1), where both

cooperating with good agents and defecting against bad agents is
good, and the remaining is bad. We allow for assessment errors,
where with a probability 𝑒𝑎 the reputation of an agent is incorrectly
recalled. If 𝑒𝑎 = 0 and every agent starts with the same initial
assessment, reputations remain indefinitely synchronized, however,
if 𝑒𝑎 > 0, disagreements can appear and propagate. In case of error,
we assume all AAs incorrectly recall the reputation of the agent.

Considering that the social norms we study differ only in 𝑑𝐵,𝐶
and𝑑𝐵,𝐷 , we can generalize a social norm as the probability of being
effectively assigned a good reputation [26] in any of the scenarios
above. After including errors, these probabilities are given by:

𝑃𝑑𝐺,𝐶 = (1 − 𝑒𝑒 ) (1 − 𝑒𝑎) + 𝑒𝑒𝑒𝑎

𝑃𝑑𝐺,𝐷 = 𝑒𝑎

𝑃𝑑𝐵,𝐶 = 𝑑𝐵,𝐶 (𝑃𝑑𝐺,𝐶 − 𝑒𝑎) + 𝑑𝐵,𝐷 (1 − 𝑃𝑑𝐺,𝐶 − 𝑒𝑎) + 𝑒𝑎

𝑃𝑑𝐵,𝐷 = 𝑑𝐵,𝐷 (1 − 2𝑒𝑎) + 𝑒𝑎

(1)

As mentioned, human and AAs are not necessarily assigned
reputations following the same social norm [22, 29]. Two potentially
distinct social norms are applied: 𝑑𝐻 , for humans, and 𝑑𝐴 , for AAs.

The reputation dynamics are linked to the strategy distribution
in the population, and the success of each strategy depends on
the distribution of reputations. We consider that the two dynamics
happen at distinct timescales [23, 56]. More precisely, reputations
are assumed to change at a much faster rate than strategies, and
thus for any distribution of strategies it is possible to study the
convergence of reputation dynamics. We define a strategy state
as 𝑛 = (𝑛𝐴𝐿𝐿𝐶 , 𝑛𝐴𝐿𝐿𝐷 , 𝑛𝐷𝐼𝑆𝐶 ), where 𝑛𝑠 represents the number of
adaptive agents using strategy 𝑠 , and 𝑛𝐴𝐿𝐿𝐶 + 𝑛𝐴𝐿𝐿𝐷 + 𝑛𝐷𝐼𝑆𝐶 = 𝑍 .

In a well-mixed population, for any strategy state 𝑛, reputations
are characterized by the probability that any agent, facing an indi-
vidual of strategy 𝑠 , will consider that individual good. Although
reputations are not assigned based on strategies (as they are not
in the norm), the resulting reputations depend on the actions used,
and therefore each strategy will have a distinct probability of be-
ing considered good. Given the possible combinations of strategies
and agent types, we define seven distinct reputation probabilities:
𝑟𝐻𝑠 , 𝑠 ∈ 𝑆 , the probability that a human will consider another hu-
man using strategy 𝑠 as good; 𝑟𝐴𝑠 , the probability that the AA will
consider a human using strategy 𝑠 as good; and 𝑟𝐻

𝐴
, the probability

that a human will perceive the AA as good. After enough pairwise
interactions, where agents played both as donors and receivers,
we can approximate these reputation probabilities by solving the
following ordinary differential equations [49]:

𝑑𝑟𝑋𝑠

𝑑𝑡
= 𝑔𝑋𝑠 (𝑡) − 𝑟𝑋𝑠 (𝑡), 𝑠 ∈ 𝑆, 𝑋 ∈ {𝐻,𝐴}

𝑑𝑟𝐻
𝐴

𝑑𝑡
= 𝑔𝐻𝐴 (𝑡) − 𝑟𝐻𝐴

, (2)

where 𝑔𝑋𝑠 (𝑡) is the probability that an individual of type 𝑋 will
assign a good reputation to an individual using strategy 𝑠 , at time
step 𝑡 (following the same scenarios of 𝑟𝑋𝑠 ). Adapting [25] to include
AAs, each 𝑔𝑋𝑠 (𝑡) will have a term related to human interactions and
another for interactions with the AA. Each of these will consider
the two scenarios where there is an interaction with an agent con-
sidered good and bad, and employ the relevant social norm. For the



probability of assigning a good reputation to the AA, 𝑔𝐻
𝐴
(𝑡), only

human interactions are relevant, as there are no interactions be-
tween AAs. This probability will depend on the strategy of the AA.
In the case of DISC, it is necessary to compute the probability that
the observer and the donor agree in the reputation of the recipient.
Considering these scenarios, these probabilities are given by:

𝑔𝐻
𝐴𝐿𝐿𝜆

(𝑡) = 𝜏

[
𝑟𝐻 (𝑡)𝑃𝑑

𝐻

𝐺,𝜆
+ 𝑟𝐻 (𝑡)𝑃𝑑

𝐻

𝐵,𝜆

]
+

𝜏

[
𝑟𝐻𝐴 (𝑡)𝑃𝑑

𝐻

𝐺,𝜆
+ 𝑟𝐻𝐴 (𝑡)𝑃𝑑

𝐻

𝐵,𝜆

]
𝑔𝐻𝐷𝐼𝑆𝐶 (𝑡) = 𝜏

[
𝑞
𝑔

𝐻,𝐻
𝑃𝑑

𝐻

𝐺,𝐶 + 𝑞𝑑𝐻,𝐻𝑃
𝑑𝐻

+ 𝑞𝑏𝐻,𝐻𝑃
𝑑𝐻

𝐵,𝐷

]
+

𝜏

[
𝑞
𝑔

𝐻,𝐴
𝑃𝑑

𝐻

𝐺,𝐶 + 𝑞𝑑𝐻,𝐴𝑃
𝑑𝐻

+ 𝑞𝑏𝐻,𝐴𝑃
𝑑𝐻

𝐵,𝐷

]
𝑔𝐴
𝐴𝐿𝐿𝜆

(𝑡) = 𝜏

[
𝑟𝐴 (𝑡)𝑃𝑑

𝐻

𝐺,𝜆
+ 𝑟𝐴 (𝑡)𝑃𝑑

𝐻

𝐵,𝜆

]
+ 𝜏𝑃𝑑

𝐻

𝐺,𝜆

𝑔𝐴𝐷𝐼𝑆𝐶 (𝑡) = 𝜏

[
𝑞
𝑔

𝐴,𝐻
𝑃𝑑

𝐻

𝐺,𝐶 + 𝑞𝑑
𝐴,𝐻

𝑃𝑑
𝐻

𝐵,𝐶 + 𝑞𝑑
𝐴,�̄�

𝑃𝑑
𝐻

𝐺,𝐷 + 𝑞𝑏𝐴,𝐻𝑃
𝑑𝐻

𝐵,𝐷

]
+

𝜏

[
𝑔𝐻𝐴 (𝑡)𝑃𝑑

𝐻

𝐺,𝐶 + 𝑔𝐻𝐴 (𝑡)𝑃𝑑
𝐻

𝐺,𝐷

]
𝑔𝐻𝐴 (𝑡) =


𝑟𝐻 (𝑡)𝑃𝑑𝐴

𝐺,𝜆
+ 𝑟𝐻 (𝑡)𝑃𝑑𝐴

𝐵,𝜆
, if 𝑠𝐴 = 𝐴𝐿𝐿𝜆

𝑞
𝑔

𝐴,𝐻
𝑃𝑑

𝐴

𝐺,𝐶
+ 𝑞𝑑

𝐴,𝐻
𝑃𝑑

𝐴

𝐺,𝐷
+

𝑞𝑑
𝐴,�̄�

𝑃𝑑
𝐴

𝐵,𝐶
+ 𝑞𝑏

𝐻,𝐴
𝑃𝑑

𝐴

𝐵,𝐷
, if 𝑠𝐴 = 𝐷𝐼𝑆𝐶

(3)
where 𝜆 ∈ {𝐶, 𝐷}; 𝑃𝑑 = 𝑃𝑑

𝐺,𝐷
+ 𝑃𝑑

𝐵,𝐶
; 𝜏 = (1 − 𝜏), the probability

of a H-H interaction; 𝑟𝑋 (𝑡) = ∑
𝑠∈𝑆 (𝑛𝑠/𝑍 ) · 𝑟𝑋𝑠 (𝑡) is the average

reputation of humans as perceived by agents of type 𝑋 ∈ {𝐻,𝐴};
𝑔(𝑡) = 1 − 𝑔(𝑡); and 𝑟 (𝑡) = 1 − 𝑟 (𝑡), which is the fraction of bad
individuals in respect to 𝑟 (𝑡). Furthermore, 𝑞𝑔

𝑋𝑌
(𝑞𝑏
𝑋𝑌

) represents
the average fraction of humans mutually considered good (bad) in
the eyes of an individual of type 𝑋 and another of type 𝑌 . Finally,
𝑞𝑑
𝑋𝑌

represents the average fraction of humans over which there is
a disagreement about the reputations in the perspective of type 𝑋
and 𝑌 individuals. These include both scenarios where 𝑋 considers
one focal agent good and 𝑌 considers it bad, and vice versa. When
instead we have 𝑞𝑑

𝑋𝑌
, we have that only 𝑋 considers a focal indi-

vidual bad, and 𝑌 considers it good, and thus 𝑞𝑑
𝑋𝑌

+ 𝑞𝑑
𝑋𝑌

= 𝑞𝑑
𝑋𝑌

.
The agreement and disagreement of private views over a focal
individual can be calculated by [26, 52]:

𝑞
𝑔

𝑋𝑌
=
∑︁
𝑠∈𝑆

𝑛𝑠

𝑍
𝑟𝑋𝑠 𝑟𝑌𝑠 𝑞𝑏𝑋𝑌 =

∑︁
𝑠∈𝑆

𝑛𝑠

𝑍
𝑟𝑋𝑠 𝑟𝑌𝑠 𝑞𝑑

𝑋𝑌
=
∑︁
𝑠∈𝑆

𝑛𝑠

𝑍
𝑟𝑋𝑠 𝑟𝑌𝑠 .

(4)
A thorough explanation for Equations 1 and 3 is presented in

the supplementary material [51].

3.3 Strategy Adoption Dynamics
Wemodel the adoption of strategies via a birth-death process, where
two mechanisms exist: mutations (a probability 𝛾 of adopting an-
other available strategy) and social learning. The latter is modelled
using the pairwise comparison rule [70], otherwise known as the
Fermi update rule, where an individual will imitate the strategy
of another with a probability that increases with the difference

in fitness of the two strategies. The probability that an individ-
ual using strategy 𝑠 imitates another using strategy 𝑠′ is given by
𝑃𝑠→𝑠′ (𝑛) = (1 + 𝑒−𝛽Δ𝐹𝑠,𝑠′ )−1, where Δ𝐹𝑠,𝑠′ (𝑛) = 𝐹𝑠′ (𝑛) − 𝐹𝑠 (𝑛) is
the difference between the average fitness of strategy 𝑠′ and strategy
𝑠 , and 𝛽 is the strength of selection. A higher strength of selection
(𝛽 → ∞) leads to a deterministic evolutionary process, while a
lower value (𝛽 → 0) converges to a random selection process.

In the donation game, the average fitness of a strategy is deter-
mined by two components: 𝑏, the benefit a recipient obtains when
it is cooperated with; and 𝑐 , the cost incurred by a donor when
it cooperates. The fitness of a strategy will naturally depend on
the distribution of strategies and reputations of the population. As
such, we first determine the average fitness of a strategy under a
strategy state 𝑛, given by 𝐹𝑠 (𝑛) = 𝑏𝑅𝑠 (𝑛) − 𝑐𝐷𝑠 (𝑛), where 𝑅𝑠 (𝑛) is
the probability that an individual of strategy 𝑠 is cooperated with,
which for human individuals is given by

𝑅𝑠 (𝑛) = (1 − 𝑒𝑒 )
[
𝜏

(𝑛𝐴𝐿𝐿𝐶
𝑍

+ 𝑛𝐷𝐼𝑆𝐶

𝑍
𝑟𝐻𝑠

)
+ 𝜏𝐶 (𝑠)

]
, (5)

where 𝐶 (𝑠) is the probability that the AA will opt to cooperate
(before errors) with an individual of strategy 𝑠 . As such, 𝐶 (𝑠) = 1
if 𝑠𝐴 = 𝐴𝐿𝐿𝐶 , 𝐶 (𝑠) = 0 if 𝑠𝐴 = 𝐴𝐿𝐿𝐷 , and 𝐶 (𝑠) = 𝑟𝐴𝑠 if 𝑠𝐴 = 𝐷𝐼𝑆𝐶 .
For the AA, the probability of receiving a donation is given by

𝑅𝐴 (𝑛) = (1 − 𝑒𝑒 )
(𝑛𝐴𝐿𝐿𝐶

𝑍
+ 𝑛𝐷𝐼𝑆𝐶

𝑍
𝑟𝐻𝐴

)
. (6)

Likewise, 𝐷𝑠 (𝑛) is the probability that an individual using strat-
egy 𝑠 will donate, and is calculated for humans as

𝐷𝑠 (𝑛) =


1 − 𝑒𝑒 , if 𝑠 = 𝐴𝐿𝐿𝐶

0 , if 𝑠 = 𝐴𝐿𝐿𝐷

𝜏𝐷𝐻
𝐷𝐼𝑆𝐶

(𝑛) + 𝜏𝐷𝐴
𝐷𝐼𝑆𝐶

(𝑛) , if 𝑠 = 𝐷𝐼𝑆𝐶

, (7)

where𝐷𝐻
𝐷𝐼𝑆𝐶

(𝑛) = (1−𝑒𝑒 )𝑟𝐻 and𝐷𝐴
𝐷𝐼𝑆𝐶

(𝑛) = (1−𝑒𝑒 )𝑟𝐻𝐴 are the
probabilities of aDISC human cooperating with a human and an AA,
respectively. The probability that an AAwill donate,𝐷𝐴 (𝑛), is equal
to humans, except when 𝑠𝐴 = DISC, where 𝐷𝐴 (𝑛) = (1 − 𝑒𝑒 )𝑟𝐴 .

Using the reputations and fitness at each strategy state, we can
analyze the evolution of strategy adoption by employing a Markov
chain [53, 55] with the state space given by all the possible strategy
states M = {𝑛 | 𝑛𝑖 + 𝑛 𝑗 + 𝑛𝑘 = 𝑍 }, for a total of 𝑆 =

(𝑍+2
2
)
states.

The transition probability between two states that differ only by the
strategy of one agent is equal to the probability that an individual
using strategy 𝑠 changes to strategy 𝑠′ when in state 𝑛, via either
mutation or imitation, and is given by

𝑀𝑠→𝑠′ (𝑛) = (1 − 𝛾)𝑛𝑠
𝑍

𝑛𝑠′

𝑍 − 1𝑃𝑠→𝑠′ (𝑛) + 𝛾
𝑛𝑠

2𝑍 , (8)

where 𝛾 is the aforementioned mutation probability. This formu-
lation, which we follow in the Results section, does not consider
that a human can imitate an AA, removing its direct influence
on imitations and focusing instead on its impact on reputations
and payoffs. However, it is also possible to permit this by replac-
ing 𝑛𝑠′

𝑍−1𝑃𝑠→𝑠′ (𝑛) with
(
𝜏

𝑛𝑠′
𝑍−1𝑃𝑠→𝑠′ (𝑛) +𝑇 (𝑠′)

)
, where 𝑇 (𝑠′) = 0

if 𝑠 ≠ 𝑠𝐴 or𝑇 (𝑠) = 𝜏𝑃𝑠→𝑠𝐴 (𝑛) if 𝑠′ = 𝑠𝐴 , which represents the prob-
ability of imitating the AA if it is using strategy 𝑠′. The transition
matrix𝑀 of the Markov chain, where each entry𝑀𝑎,𝑏 is equal to



the probability of transitioning from state 𝑛𝑎 to state 𝑛𝑏 , is given
by

𝑀𝑎,𝑏 =


𝑀𝑠→𝑠′ (𝑛𝑎) if 𝑛𝑏𝑠 = 𝑛𝑎𝑠 − 1 ∧ 𝑛𝑏

𝑠′ = 𝑛𝑎
𝑠′ + 1

∧ 𝑛𝑏
𝑠′′ = 𝑛𝑎

𝑠′′

1 −∑
𝑀𝑠→𝑠′ (𝑛𝑎) if 𝑛𝑏 = 𝑛𝑎

0 otherwise

, (9)

where 𝑠, 𝑠′, 𝑠′′ ∈ 𝑆 and 𝑠 ≠ 𝑠′ ≠ 𝑠′′. Finally, as 𝑀 is irreducible,
its stationary distribution 𝜎 is unique and equal to the eigenvector
associated with eigenvalue 1 [75], satisfying 𝜎𝑀 = 𝜎 . We denote as
𝜎𝑛 the value of the stationary distribution at state 𝑛.

Additionally, we can determine the gradient of selection, the vec-
tor that points towards the most probable evolutionary trajectory in
a given strategy state, through ®𝑣 (𝑛) = (𝑀+

𝐴𝐿𝐿𝐶
−𝑀−

𝐴𝐿𝐿𝐶
, 𝑀+

𝐴𝐿𝐿𝐷
−

𝑀−
𝐴𝐿𝐿𝐷

, 𝑀+
𝐷𝐼𝑆𝐶

−𝑀−
𝐷𝐼𝑆𝐶

), where𝑀+
𝑠 = 𝑀𝑠′→𝑠 +𝑀𝑠′′→𝑠 and𝑀−

𝑠 =

𝑀𝑠→𝑠′ +𝑀𝑠→𝑠′′ are the probabilities that an individual adopts or
replaces strategy 𝑠 , respectively.

3.4 Cooperation and Disagreement Indexes
We measure cooperation through a cooperation index [56], which
estimates the fraction of donations in the population. However,
as our population contains not just distinct strategies, but distinct
types of individuals, it is relevant to distinguish between the differ-
ent directions of donations. To that end, we define three types of
cooperation index: 𝐼𝐻,𝐻 , which accounts for human-human coop-
eration; 𝐼𝐻,𝐴 , which considers cooperation from humans towards
the AA; and 𝐼𝐴 , which conversely measures the cooperation of the
AA towards humans. These can be calculated as follows:

𝐼𝐻,𝑋 =
∑︁
𝑛∈M

𝜎𝑛
1
𝑍

(
𝐷𝐴𝐿𝐿𝐶 (𝑛) · 𝑛𝐴𝐿𝐿𝐶 + 𝐷𝑋

𝐷𝐼𝑆𝐶 (𝑛) · 𝑛𝐷𝐼𝑆𝐶

)
𝐼𝐴 =

∑︁
𝑛∈M

𝜎𝑛𝐷
𝐴 (𝑛)

(10)

where 𝑋 ∈ {𝐻,𝐴}. It is also possible to quantify the average dis-
agreement among reputation assignments in the human population:

𝑞𝑑 =
∑︁
𝑛∈M

𝜎𝑛𝑞
𝑑
𝐻,𝐻 (𝑛)

, (11)

where 𝑞𝑑
𝐻,𝐻

(𝑛) is the disagreement between human reputations
at the strategy state 𝑛, as expressed in Equation (4).

4 RESULTS
We study the impact of an artificial agent (AA) by measuring the
prevalence of cooperation (via the cooperation index, see Methods
Section 3.4) as a function of the fraction of interactions between
humans and the AA (𝜏). A focus is given to human-human coop-
eration, 𝐼𝐻,𝐻 , as it is our primary concern: AAs cooperation is
a byproduct of the fixed-strategy considered, and human to AA
cooperation is here not assumed to increase the social benefits of
cooperation, as we are mainly interested in adaptive agents’ welfare.
Furthermore, we also explore how disagreements between humans
reputation assignments, 𝑞𝑑 , change depending on the social norms
employed and the presence of the AA. As previously mentioned,
in an exclusively human population under private reputations, the

perception of unjustified defections (stemming from low agreement
on reputations) leads to low cooperation [23, 41, 43, 72, 73]. This
is visible in Figure 2, where cooperation is close to zero across all
norms tested, even when the donation benefit, 𝑏, is considerably
larger than 𝑐 , the cost of donating. An exception is the IS norm,
which by nature does not consider past reputations, and thus, when
errors are not present, works similarly to when reputations are
public [72, 74]. Although it achieves the highest cooperation of all
norms tested, it still requires a high 𝑏/𝑐 for cooperation to be as
common as defection. Our objective is to study if the presence of an
AA can assist in promoting cooperation by increasing coordination
in reputations, mitigating the punishment dilemma present when
reputations are private.

Firstly, in Section 4.1, we explore scenarios where humans judge
AAs based solely on their actions, [20, 22] by fixating 𝑑𝐴 = IS. In
Section 4.2, we then study scenarios where humans and AAs are
judged equally, clarifying whether the simplified judgment towards
AAs is detrimental to their capacity to promote cooperation.

Figure 2: Left: Human cooperation under public and private
reputations, 𝐼𝐻,𝐻 , without artificial agents, for two exempli-
fying social norms and benefit-to-cost ratios, 𝑏/𝑐. Right: The
average reputation assigned to each strategy under public
(top) and private (bottom) reputations (𝑏/𝑐 = 3). While co-
operation increases with 𝑏/𝑐 under public reputation, when
reputations are private cooperation remains close to 0 for
every norm except IS, which still leads to low (< 0.65) cooper-
ation. This is attributed to lack of distinguishability between
strategies, leading to DISCs being unable to punish defectors.
𝑍 = 100, 𝑒𝑒 = 𝑒𝑎 = 0.01, 𝛾 = 0.01, 𝛽 = 1.

4.1 Cooperation under Simplified Human
Judgment

In Figure 3, we present the 𝐼𝐻,𝐻 as a function of 𝑏/𝑐 , for different
fractions of interactions with the AA employing a DISC strategy,
when fixating 𝑑𝐴 = IS and varying 𝑑𝐻 . When 𝑑𝐻 = IS, we observe
a rise in cooperation from its already modest cooperation rate
as 𝜏 increases. Similarly, cooperation under SS is greatly boosted
by the AA, with a low value of 𝜏 being enough to reach very high
cooperation rates. At a higher 𝜏 , SH and SJ feature phase transitions
in their cooperation rates, reaching almost universal cooperation.



These results provide an initial look at how an AA can potentially
promote cooperation even under previously uncooperative norms.

As for the other strategies that AAs can employ: using ALLC,
cooperation under IS and SS is actually reduced as 𝜏 increases. The
other norms continue with no cooperation in most cases. Similarly,
anALLD AA deters cooperation in the majority of cases. We present
and analyze these results in the supplementary material [51].

Figure 3: Human cooperation, 𝐼𝐻,𝐻 , at different frequencies
of interaction with the DISC AA and benefit-to-cost ratios,
𝑏/𝑐, when 𝑑𝐴 = IS, and varying 𝑑𝐻 . A low 𝜏 is enough to
promote cooperation under IS and SS; But a greater frequency
is necessary to promote cooperation under SJ and SH, at
which point it features a phase transition to system-wide
cooperation. We follow the parameters of Figure 2.

By observing the strategy stationary distribution (see Section
3.3), shown in Figure 4 for SS and 𝑏/𝑐 = 3, we can clarify the effect
of the DISC AA. While at 𝜏 = 0 the entire population adopts ALLD
across all norms, when the transitions to cooperation occur via a
higher 𝜏 , the composition shifts to a majority ofALLC and a fraction
of DISC. This results from the AA compensating the payoff of ALLC
and DISC over that of ALLD, causing a transition. Furthermore, the
proportion of DISC adopters is related to the reputation of humans:
In IS and SS, whose ALLC-DISC simplex edge always contains
good individuals (except in the presence of errors, discussed in the
supplementarymaterial [51]),DISC is more common in the presence
of the AA, as its behavior will be undistinguishable from ALLC.
Inversely, when reputations are overall lower, such as under SJ and
SH, we observe a greater proportion of ALLC (see supplementary
material [51] for all remaining simplexes).

Although cooperation can drastically increase by introducing an
AA, disagreement in reputations does not follow the same pattern
across social norms. Figure 5 presents disagreement as a function of
𝑏/𝑐 , similarly to Figure 3. As expected, at 𝜏 = 0, disagreement is very
low in IS, due to not using reputations, and SH, as reputations are
low overall. Disagreement is maximized in SJ, due to its symmetric

nature, and in SS, for its symmetry in the ALLD equilibrium. How-
ever, despite cooperation in SJ and SH behaving similarly after the
addition of the AA, disagreement decreases in SJ while increasing
in SH. In SS, cooperation also increases as disagreement decreases.
This suggests a norm dependent relation between cooperation and
disagreement: Increased disagreement in SH is expected to result in
better cooperation, as reputations are often low, so more agreement
means some agents will instead have good reputations; In SJ, due
to its symmetry, disagreement stays constant if everyone applies
the same norm, but interactions with the AA while the population
is positioned at ALLC result in higher agreement. Finally, in SS,
lower disagreements stem from synchronized negative judgments
towards defectors, resulting in better performance of DISCs.

By studying the evolution of average reputations as 𝜏 increases,
presented in Figure 6, the impact of the AA in human cooperation
becomes clearer. Across all norms, as 𝜏 increases, both humans and
the AA assign better reputations to ALLC and/or DISC relative to
ALLD. In particular: IS shows only an increase in DISC reputations,
as ALLC and ALLD are universally agreed to be good and bad,
respectively; starting from fully neutral reputations at 𝜏 = 0, SJ
shows an increase in the human-assigned reputation of ALLD and
DISC and a decrease of ALLC before the phase transition, which
then switch to an increase of ALLC and DISC after the phase tran-
sition. However, the AA-assigned reputations instead consistently
increase that of ALLC while reducing DISC and ALLD before the
phase transition. SH increases primarily the reputation of ALLC
and DISC after the phase transition for humans, but across the full
𝜏 range for the AA; and SS reduces that of ALLD, with a slight in-
crease to DISC. The difference between human and AA reputations
results not just from the simplified human judgment towards AAs,
but also from the AA assigning reputations following interactions
as opposed to observations, resulting in an easier distinction be-
tween ALLD and the remaining strategies. This allows the AA to
better target punishments towards ALLD and benefit cooperative
strategies. Furthermore, it justifies the phase transitions observed
in SH and SJ, as such occurs when the payoff of ALLC surpasses
that of ALLD. As human reputations become distinct for ALLD and
cooperative strategies, the punishment dilemma is mitigated.

4.2 Cooperation under Homogeneous Norms
We now study hybrid populations when humans and AAs are
judged equally, that is, 𝑑𝐻 = 𝑑𝐴 , providing a comparison point
to understand the impact of simplified human judgment against
AAs. The equivalent plots for this scenario are presented in the
supplementary material [51]. The results under this setup present
key differences to the prior section. In particular, SS shows greater
overall cooperation, with a higher reputation assigned to the AA. SJ
requires a lower 𝑏/𝑐 to feature phase transitions, yet shows neutral
human-assigned reputations, indicating the inability of the AA in
mitigating the punishment dilemma. Inversely SH sees the tran-
sitions happen at a higher 𝑏/𝑐 , as ALLC and DISC reputations are
much lower. As IS presents equal results, it is omitted from dis-
cussion. Regarding disagreements, as expected, SJ shows maximal
disagreement independent of 𝜏 , as the AA no longer shapes repu-
tations. On the other hand, SH shows no decay in disagreement
after the phase transition. This suggests that the simplified human



Figure 4: The stationary distribution (rescaled such that the maximum value is 1), gradient of selection, average reputation and
average disagreement at each strategy state for different frequencies 𝜏 of interaction with a DISC AA, when 𝑑𝐴 = IS and 𝑑𝐻 = SS.
The population transitions from an ALLD state, with high reputation disagreement, to states where ALLC and DISC co-exit and
every agent accrues the same (good) reputation, resulting in higher cooperation. We follow the same parameters as Figure 2.

Figure 5: Human disagreement, 𝑞𝑑 , at different frequencies
of interaction with the DISC AA, for different benefit-to-cost
ratios, 𝑏/𝑐, when 𝑑𝐴 = IS, and varying 𝑑𝐻 . We see that a low
prevalence of the AA decreases disagreement under SS and
SJ, but increases it under SH. IS remains largely unaffected
by the AA. We follow the parameters of Figure 2.

judgment against AAs can actually have both advantages and dis-
advantages regarding cooperation and agreement. The reason for
this difference is that judging the AA using a distinct norm then in-
fluences how humans judge those who interact with it, influencing
how the AA then acts, which then cycles back to judging the AA
differently. As such, a stricter judgment of the AA results in lower
reputations for cooperative strategies, and thus lower cooperation.
Since judging the AA with IS is less strict than SH, we see an in-
crease in cooperation under the simplified human judgment. On
the other hand, SS is less strict than IS, so the simplified judgment
results in lower cooperation.We illustrate this in the supplementary
material [51] by interpolating between norms for 𝑑𝐴 , showing how
cooperation increases with less strict judgment of the AA.

5 DISCUSSION AND CONCLUSION
Of the many cooperation mechanisms present in society, indirect
reciprocity (IR), and reputations, are key to ensure stable coop-
eration among unrelated individuals [37]. At the same time, AI
tools such as chatbots, recommendation, and reputation systems
have an increased role in shaping social dynamics [30]. As artificial
agents (AAs) permeate physical society through robots, they can
fundamentally change the behavior of humans. Although there
have been efforts to assess the short-term impact of AAs in human
cooperation [47, 64], their potential through IR has remained unex-
plored. Laboratory experiments can help bridge this gap, yet scaling
empirical works faces important logistical and technical challenges,
and testing future scenarios through longitudinal studies is espe-
cially arduous. To this end, we presented a theoretical model to
study the impact of an AA, akin to those found in online platforms
[6], in a human population interacting through IR. In it, agents use
context-dependent social norms, contingent on the nature (human
or AA) of the observed agents, allowing us to consider that humans
judge AAs solely on their outcome, and not their intention [22].

We show that cooperation can be improved, in the donation game
and under private reputations, by introducing an AA employing
a fixed strategy. While prior work showed that this is the case
outside of IR [12, 54, 69], we also show how cooperation can still
emerge under the stricter assumption that humans will disregard
its intentions and not imitate the strategy of the AA. The latter,
typically not followed in work on hybrid populations, allows us to
better generalize our results with a focus on the impact of AAs in
reputations and payoffs.

In our initial experiment, where the AA is judged solely for its
action [22], we see a clear benefit by introducing the AA across
all norms, albeit with different degrees of success. Norms such
as Image-Score (IS) and Simple Standing (SS) have a greater in-
crease in cooperation than norms such as Stern Judging (SJ) and
Shunning (SH), although all norms can achieve almost universal
cooperation with enough frequency of interactions with the AA.
Furthermore, the disagreement in assigned human reputations is
highly affected by the AA, with disagreement decreasing under SS
and increasing with SH, when interactions with the AA become
more frequent. This suggests a deeper relation between cooperation
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Figure 6: Average reputations, 𝑟𝐻𝑠 , 𝑠 ∈ 𝑆 and 𝑟𝐻
𝐴

(top) and 𝑟𝐴𝑠 , 𝑠 ∈ 𝑆 (bottom), at different frequencies of interaction with a DISC
AA, when 𝑑𝐴 = IS, and varying 𝑑𝐻 . Introducing an AA increases the average human and AA-assigned reputation of DISC and/or
ALLC relative to ALLD, resulting in more targeted punishments. We follow the same parameters as Figure 2, with 𝑏/𝑐 = 3.

and disagreement. Across all norms, the reputations of cooperators
(DISC / ALLC) and defectors (ALLD) becomes distinct from each
other, assisting both human DISCs and the AA in avoiding cooper-
ating with defectors and thus promoting cooperative strategies: the
punishment dilemma of private indirect reciprocity is mitigated.
Finally, by studying a simpler scenario where AAs are judged like
humans, we clarify the impact of the simplified judgment against
AAs: although cooperation is higher in SJ and SS, it is also lower
under SH. Furthermore, SJ presents no reduction in disagreement
and thus AAs no longer mitigate the punishment dilemma. This
suggests that simplified AA judgment might prove more beneficial
in triggering cooperation than more complex judgment rules.

We draw five major conclusions: 1) For an AA to promote human
cooperation through IR, it must reward cooperators, and possibly
punish defectors, which requires it to be able to readily identify
cooperative actors. We conclude that, for this requirement, even
simple social norms such as Image-Scoring can achieve positive re-
sults. 2) An AA can promote human cooperation by increasing the
gap between human reputations assigned to cooperators and defec-
tors, successfully mitigating the punishment dilemma. This allows
for both better punishments of defectors, and greater rewarding of
cooperators. This stems from the AA being able to assess humans
through direct interactions at a greater scale than humans.3) More
consensus does not imply higher cooperation and distinguishability.
The AA is capable of both increases and decreases in consensus
depending on the social norm. 4) The performance of the AA in pro-
moting cooperation and consensus can be both hindered or boosted
by the simplified human judgment, depending on the social norm.
In both cases, it is still possible to achieve widespread cooperation
by the presence of the AA. In general, more permissive judgments
of the AA permit more positive impact. And 5) If interactions with
the AA are frequent enough and the AA is capable of identifying

defectors, humans will ultimately delegate reputation-based dis-
crimination to the AA, allowing humans to adopt unconditional
cooperation. This dynamic has natural connections with delegation
in human-AI systems [12] and deserves further exploration.

It is essential that social interactive agents are designed consider-
ing their impacts in long-term human cooperation [30, 46]. We hope
that our study inspires future Human-AI experimental research
(e.g., see [5]), considering reputation dynamics, social norms and
the cultural environment where AAs are placed. Many factors have
proved relevant to trigger prosociality in humans through AAs [44],
however, aspects such as characterizing the social norms in place
during hybrid interactions, having AAs identify and adapt to social
norms, or the role of transparency [24] when judging or receiving
judgments from AAs remain unexplored. More fundamentally, ex-
perimental frameworks to analyze IR and compare it to theoretical
models remain a challenge. Our work aims to provide a theoretical
baseline for future Human-AI interaction studies under IR and to
inform new models.

Finally, throughout this work we implied the capacity of AAs to
actively discriminate agents based on their assigned reputations
[65]. We clarify that this position was taken to study the conse-
quences of such systems and not as a support for algorithmic dis-
crimination. We restrict the scope of our results to the context of
the donation game under IR, where reputations solely convey the
cooperative nature of individuals and no other characteristic.
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